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Artificial intelligence (AI)-powered technologies are becoming an integral part of youth’s

environments, impacting how they socialize and learn. Children (12 years of age and

younger) often interact with AI through conversational agents (e.g., Siri and Alexa) that

they speak with to receive information about the world. Conversational agents can

mimic human social interactions, and it is important to develop socially intelligent agents

appropriate for younger populations. Yet it is often unclear what data are curated to power

many of these systems. This article applies a sociocultural developmental approach to

examine child-centric intelligent conversational agents, including an overview of how

children’s development influences their social learning in the world and how that relates

to AI. Examples are presented that reflect potential data types available for training AI

models to generate children’s conversational agents’ speech. The ethical implications

for building different datasets and training models using them are discussed as well as

future directions for the use of social AI-driven technology for children.
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INTRODUCTION

Children use social interactions as a source of information to understand the world, and artificial
intelligence (AI) is playing a greater role in those interactions. For example, in a 2019U.S. survey,
31% of 8–12-year-olds reported having access to a conversational system home device powered
by AI (Rideout and Robb, 2019); and from 2018 to 2019, the UK saw a nearly 2-fold increase in
children’s access to these devices (Mediacom, 2018). Conversational systems like Alexa, Google
Home, or Siri use AI to imitate human responses by both understanding and producing speech or
textual responses. Their responses are so lifelike that parents have wondered if their children should
be polite to these devices (Rosenwald, 2017, March 2; Baig, 2019). Yet it is unclear what data are
being used to train the AI models.

To aid in the process of designing child-centric AI systems, this paper applies a sociocultural
developmental approach to examining conversational agents designed for children. For the
purposes of this paper, we define children to include early adolescents: those 12 years of age and
younger. Our main argument is that conversational agents can act as social peers that children
can learn from. We summarize approaches for building large-scale databases that represent
conversational speech for children’s agents, including a discussion of their strengths, weaknesses,
and ethical implications. Finally, we present key next steps for incorporating conversational agents
in the lives of children while maintaining their health and safety.
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LEARNING THROUGH SOCIAL
INTERACTIONS: AN OPPORTUNITY FOR
CONVERSATIONAL AGENTS

Human development is a complex system that incorporates
many factors across different time scales (Smith and Thelen,
2003; Fox et al., 2010). People’s skills and abilities are a
combination of genetics, the environment that interacts with
those genes (whether the genetic material reaches its full
potential), and their experiences in the world (Fox et al., 2010).
A sociocultural approach to human development contends that
children’s interactions in their communities can shape their
attitudes and perceptions. According to Rogoff (1990), children
are “cognitive apprentices” that learn through observing and
participating with others. Children are novices that interact with
experts in their communities to develop specific skills. Through
these interactions, children discover what ideas and approaches
are valued. Experts in a community are not limited to adults but
also include children’s social peers.

Social conversational agents may shape how youth learn
in the future by acting as expert peers. Conversational agents
can provide full human-like conversation or provide simple
direct responses such as with a recommender system. Artificial
conversational agents act behaviorally real by providing social
contingency such as “listening,” pausing, and responding to
users’ verbal requests, and they come in a variety of forms.
For instance, AI-powered agents can be embodied (i.e., virtual
character and anthropomorphized robot) or simply be a voice
emitting from a speaker. Advancements in AI design have
allowed artificial agents to provide socially rich conversations,
similar to people (Ryokai et al., 2003; Kory-Westlund and
Breazeal, 2019; Garg and Sengupta, 2020), and can even respond
to users’ emotional states (D’mello and Kory, 2015). Because
of conversational agents’ social realism, children are known
to use the same communication strategies with voice-driven
characters as in face-to-face conversations (Cheng et al., 2018)
and be more motivated to learn with an agent peer than without
one (Chase et al., 2009; Biswas et al., 2010; Kory-Westlund
and Breazeal, 2019). Furthermore, children can develop deep
one-way emotionally tinged relationships with media figures or
characters that they view as friends or authority figures (Brunick
et al., 2016; Gleason et al., 2017). Social–emotional connections
with AI-powered agents can boost learning (Ryokai et al., 2003;
Kory-Westlund et al., 2017; Calvert et al., 2020), and the types of
emotions that youth experience when interacting with agents can
both positively and negatively affect learning outcomes, such as
boredom-reducing learning (Baker et al., 2010).

GENERATING DATA FOR CHILDREN’S
CONVERSATIONAL AGENTS

Well-designed AI can enhance the lives of children, and this
begins with the data used to run the technology. Typically,
machine learning algorithms power social conversational agents.
Sutskever et al. (2014) proposed using a sequence-to-sequence
method, such as various types of recurrent neural network (RNN)

languagemodels (e.g., long short-termmemory) for language and
conversations. In an RNN model, a neuron at each level or layer
stores the state of the previous input while processing the current
input. This type of modeling has shown to be efficient in tasks
like learning conversation (Sutskever et al., 2014; Vinyals and Le,
2015). More specifically, in a sequence-to-sequence framework,
the input sequence is a conversational phrase from the child, and
the output is the sequence of an answer to be delivered by the
agent. The AI models are typically trained on dialogue databases.

The choices that are made about the content of dialogue
databases have the potential to influence children’s social
learning, including how they view themselves, communicate,
and think about other people. For conversational agents to
know when and how to provide the appropriate output or
response, the model (i.e., RNN) ideally needs to be trained on
large amounts of data (Faruqui et al., 2015). Furthermore, the
datasets need to be indicative of how youth converse with one
another. Research has shown that children prefer conversational
agents that mimic children’s, not adult’s, communication styles
(Druga et al., 2017). It is important to note that large datasets
and machine learning algorithms are not necessary for effective
natural language conversations to socially engage users (Cai et al.,
2011). For example, algorithms less sophisticated than RNN
models can affect emotions and promote learning (Cai et al.,
2011; Forsyth et al., 2015). However, these approaches can limit
the generalizability of the agents’ conversations beyond a specific
domain (e.g., Forsyth et al., 2019).

The dataset leveraged to train the agent can either be built
on a preexisting dataset or from newly created data; both
options have advantages and disadvantages. Preexisting datasets
that have a previous history of use can reduce the amount of
time, compared with creating a new dataset, to train neural
networks to learn the appropriate set of rules it will use to make
decisions. However, using an already created dataset reduces
the flexibility to change the content. Curating a new dataset
allows the dialogue to be personalized to meet the goals of the
project by providing greater ease in manipulating, tweaking, and
molding the data than a preexisting dataset. For example, with
a newly created dataset, the personality and tone of the agent
can be developed for specific use cases and provide opportunities
to adjust for bias in the data. However, creating a completely
new dataset is a painstakingly time-intensive practice. Creating
a new dataset requires identifying the appropriate dialogue
and gathering the exact information from that conversation.
Regardless of what source is used, the data that are curated
will need to account for the specific ranges and domains (e.g.,
tutoring and social recommendation systems). For example, a
conversational agent tutoring a preschooler will be different than
a social recommendation system for an 11-year-old.

We present three examples, books, films, and children’s
real-world interactions, for generating data for child-centered
conversational agents that could mimic a social peer. These
exemplify ways that designers and researchers can collect data
and develop corpora for children’s conversational agents. Books
and films represent data sources that provide readily available
content aimed at child audiences. Books and films are crafted
to meet the specific language abilities of specific ages and often
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contain conversations, themes, and contexts focused on youth.
In addition, these longer formats were chosen, as opposed
to their shorter counterparts (e.g., short stories and show
episodes), because they often containmultiple conversations with
continuity around a theme or an idea. Finally, recording youth’s
real-world conversations could power artificial agents to closely
mimic children’s own real-world peers. We discuss the benefits,
challenges, and ethical implications. An overview of exemplar
datasets we discuss is shown in Table 1.

Example 1: Books for Children
Books created for children have the potential to be sourced for
training an agent that speaks to and understands children. Books
written for young audiences use words and sentence structures
that are comprehensible to children, and they often focus on
stories and contexts relatable to them. These types of books
have become numerous and widely accessible. Several pieces of
conversational data around a theme or an idea could potentially
support the creation of a large variety of responses to a domain.

Already, datasets have been developed using children’s books.
For instance, the “Children’s Book Test” (CBT) dataset, which
represents one of the freely available children’s dialogue datasets
(Hill et al., 2016), consists of text from 108 children’s books. It was
made available by Project Gutenberg (“Project Gutenberg” 2020).
The CBT was built with the intention of using linguistic models
to examine how memory and context influence the way language
is processed and understood (Hill et al., 2016).

While children’s books can be well-written, they may not
always reflect how current language is used to convey social
meaning. Language has many facets and is a cultural creation that
changes with time. Furthermore, to be most effective, datasets
need to be built around an intended use. For example, the CBT
dataset is used to test linguistic context, not specifically to train
an AI for spoken conversations with children (Hill et al., 2016).
In addition, the books used for the CBT were published from
1820 to 1922, with 46% of the books published before 1900
(Hill et al., 2016). The social meaning in language used in the
19th and early 20th centuries is likely to be very different than
in language today. Furthermore, themes and harmful outdated
cultural norms can persist within older texts. Finally, while text
from books may be readily available in large quantities, and
datasets like the CBT exist, books are less likely to serve as a
valid source for conversational agents that mimic youth’s social
interactions with peers. For example, texts for older children and
early adolescents are likely to contain more text describing a
scene or the internal motivations of the characters than a dialogue
between them. However, books written for children could act as a
supplement or as a starting point for the creation of datasets, but
conversational agents built entirely from the text in books will
be limited.

Example 2: Movies for Children
The dialogue in children’s films could provide large amounts
of raw material for training the AI model. Several films geared
toward child audiences are released each year, providing ample
examples of social interactions and conversations that progress
over time. These movies tend to use language understandable

by children and mimic their everyday speech, often reflecting
current cultural and social meaning. Unlike books, the dialogue
and language in films are meant to be heard not read,
potentially demonstrating more nuanced language patterns
spoken between peers.

Although there have been a series of databases that are built
from movies (Tapaswi et al., 2016; Chu and Roy, 2017; Pecune
et al., 2019), few, if any, have been created to train children’s
conversational agents. For example, MovieQA (Tapaswi et al.,
2016) was created to answer questions about the content of
movies by using ∼15,000 multiple choice question answers, but
not to engage in social conversations.

Films can provide ample dialogue between children; however,
the film and television industry have specific biases about how
cultures, gender identities, languages, class, race, and ethnicity
are represented. Studies show that popular and accessible
television or film content reinforces stereotypes, normalizing
harmful representations of people with regards their race or
ethnicity (Ward, 2004; Tahmahkera, 2008; Ramasubramanian,
2011; Tukachinsky, 2015), as well as their gender (Grabe et al.,
2008; Harriger et al., 2018). Children’s film and television media
is no exception. For instance, a content analysis of the top
25 grossing children’s films from 2004 to 2016 revealed that
over two-thirds of the films emphasized gendered appearances
of female as thin and male as muscular (Harriger et al.,
2018)—reinforcing body stereotypes that girls or women are
not muscular and that all boys and men are highly muscular.
Emphasizing stereotypical representations can negatively affect
how children as young as 3 years of age view themselves (Grabe
et al., 2008; Harriger et al., 2010). Importantly, media stereotypes
can become integrated into the types of language that people
use in society (e.g., Bligh et al., 2012), infiltrating day-to-day
conversations. Dialogue from children’s digital media must be
carefully selected to avoid perpetuating harmful representations
that children could internalize.

Example 3: Children’s Real-World
Interactions
An ideal way to build a dataset for conversational agents is to
record conversations from children’s real-life social interactions
(e.g., Paranjape et al., 2018). As mentioned previously, creating
a new database provides control over what the agent learns and
increases flexibility to mold the dataset to create a child-centric
agent. When done well, capturing children’s conversations can
create culturally and linguistically diverse datasets, beyond the
stereotypes or limited views of popular media. It could be argued
that this approach reflects a clearer reality of how children
speak and behave than in books or films. A database based
on children’s interactions can capture what they say to each
other in the moment as opposed to adults’ interpretations of
how children think or behave (e.g., dialogue in books or films).
Furthermore, the entire dataset can be based on continuous
conversations between children with little adult interference,
putting an emphasis on peer-to-peer guided participation (i.e.,
Rogoff, 1990). As such, conversational agents built around youth’s
real-world interactions will likely mimic a social peer and may
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TABLE 1 | Comparison of example data sources for children’s conversational agents.

Data source Example references Advantages Disadvantages

Books Children’s Book Test (Hill et al.,

2016)

• Easy to collect

• Much data available

• Available for social interactions and

conversations at different times in history

• Majority of content written as narrative to be

read, not spoken conversation

• Interpretation of children’s conversations by

adult content creators

• May lack nuanced contemporary

speech patterns

Films MovieQA (Tapaswi et al., 2016) • Easy to collect

• Available for social interactions and

conversations at different times in history

• Content meant to be spoken conversation

• Can perpetuate negative stereotypes from the

film industry

• Interpretation of children’s conversations by

adult content creators

Real-world interactions Curiosity-evoking virtual agent

(Paranjape et al., 2018)

• Available for social interactions and

conversations at different times in history

• Reflects children’s actual speech in social

interactions

• Flexibility to include diverse representation

• Control over tone and purpose

• Content meant to be spoken conversation

• Painstakingly time-intensive

• Potentially costly

• Pronunciation challenges of

young populations

encourage children to quickly trust the system. Finally, building
new datasets from children’s conversations is an important
research initiative that further expands the AI community and
increases the availability of age-appropriate technology.

While creating a dataset using children’s social interactions
may be preferable, it is a painstaking and time-intensive process
that requires clear and specific planning. Understanding the
social meaning of children’s conversations involves both the
content and sentiment of the words, as well as their associated
non-verbal behaviors (Oertel et al., 2013). In addition, it will be
important to consider which ages to collect dialogue data from.
Databases will need to utilize a basic level of speech proficiency
for the speech of the conversational agents. For, example, young
children’s developing speech patterns may impact their ability
to pronounce words. Research has shown conversational agents
such as Echo Dot or Alexa can have problems understanding
children’s speech (Cheng et al., 2018; Beneteau et al., 2019).
However, the developing speech patterns of younger children
(i.e., the ability to pronounce certain sounds) could instead be
used to help the AI system recognize the queries of children still
developing more mature speech patterns. This approach could
also be applied for systems responding to multilingual children
that speak to systems using their non-native language and have
variations in pronunciation.

To collect data, at least two children must be brought together
to talk in a naturalistic setting where they can interact with one
another, such as playing games or learning a lesson (Paranjape
et al., 2018). The aim is not to control children’s interactions but
to facilitate sessions in which they can talk and socially engage
with one another. Recording children’s responses in a naturalistic
setting generates data that includes spontaneous conversational
interactions (Oertel et al., 2013). Researchers and designers can
determine if bringing pairs of friends, acquaintances, or children
that are strangers is appropriate for their project.

Having a diverse set of children from a variety of backgrounds
is crucial to the success of building inclusive datasets based on
real-world interactions. Creating datasets on social interactions

and dialogue originating from the real life of modern children
provides a unique opportunity to create a conversational
agent that understands and responds to children as a peer.
Consideration must be taken into which children are selected
for these recorded sessions. Designers and researchers must
resist only selecting groups that they would consider “normal”
or “typical” because the children share their cultural identity
and background or because they live conveniently nearby.
By selecting a narrow part of the population, designers
inevitably normalize that culture to the potential exclusion and
detriment of other children, especially for those from already
marginalized communities.

Furthermore, privacy is a vital aspect to consider when
building databases from children’s conversations. Parents and
children must know exactly what information they agree
to provide and when, for example, what social interactions
and conversations will be recorded and stored for what
purposes. While continually tracking and recording children’s
conversations generates more data to train the model (e.g., in the
home), it raises ethical issues with collecting data from minors.
For instance, the Council of Parent Attorneys and Advocates
(COPAA) contains legal requirements for children’s media,
typically with applications and websites, that have limitations
on what personal information can be tracked and collected
(Montgomery et al., 2017). Unfortunately, companies often
violate these rules through a variety of loopholes (Montgomery
et al., 2017; Reyes et al., 2018). Oversight must be brought in to
protect the identities of children and their communities.

DISCUSSION: NEXT STEPS FOR THE
ETHICAL DESIGN OF CHILDREN’S SOCIAL
ARTIFICIAL INTELLIGENCE

There are several uses for conversational agents in children’s day-
to-day lives. For example, they could be a comfort and a source
of entertainment for bedridden children in hospitals that have
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limited mobility and provide a more sanitary option by being
touchless. With these opportunities to enhance children’s lives,
conversational agents need to be designed carefully and ethically.
While it is challenging to predict how a technology will transform
a society, the safety and socio-emotional well-being of children
must be considered.

Maintaining Privacy
Design based on child development and social interactions
will need to incorporate safeguards within the systems for
children, particularly for those still developing advanced
spoken language skills. One mispronounced word could
send a private conversation to an unintended recipient or
a stranger. For example, one conversational home device
was found to have recorded conversations unbeknownst
to the people in the room and then sent the recording
to someone else (Shaban, 2018). The system mistakenly
heard a sequence of words in a conversation that sounded
like a request to record and then sent the data. Public
policymakers and researchers will need to investigate how
technological enhancements in AI can grow, while still ensuring
children’s privacy.

Understanding the Effect of Consumerism
on Identity
While conversational agents have the potential to connect
children to a plethora of resources and interesting experiences,
it is important to remember that these are commercially
designed technologies connected to larger companies selling
and promoting products. Slick marketing techniques that blur
commercial content into the main content are often integrated
into children’s media experiences (for an extended discussion,
see Calvert, 2008). Incentivized structures in which money
and clicks promote what information is easily found can have
damaging results on children and society. For instance, a year-
long analysis by Noble (2018) showed that simply looking up
information using the term “black girls” on Google brought up
information that primarily focused on pornography. According
to this study, if a young African-American girl used Google to
look up images or websites related to her identity, she would
see imagery of black women’s bodies as objects for sexual desire.
While not intentionally designed to cause harm, these systems
use algorithms based on commercially motivated datasets that
normalize one viewpoint and approach. Certain products or
information tied to paying customers are likely going to be
presented first. This begs the following question: how would a
child bypass this information using a voice only interface? With
traditional screens, the user can scroll past links without having
to pay close attention to content of the advertisement. Therefore,
it will be important to identify (a) the incentive structure that is

used to build the AI system, (b) the types of information being
used in the model, and (c) how that will be presented to children.

Promoting Community Involvement
Finally, the communities and cultures that these conversations
are used to train an AI have implications for not only children
in the present but future generations of child users. As a
persistent feature in society, AI systems can reify language
and cultural conventions that can be integrated into the next
generation of media and technology. Encouragingly, companies
have made positive shifts toward diversifying books, television,
and movies. However, that cannot be the stopping point for
building AI-driven systems; inevitably, there must be community
contribution and buy-in from actual children and families.
Research has shown that socially connecting with media figures
is important, particularly for marginalized youth who lack
representation in their own environment, such as from the
LBGTQIA+ community (Bond, 2018). Future conversational
agents could include more gender-inclusive options instead of
the default “her” or “him” with a range of tenor, tone, and even
regional dialect. Finally, there will need to be a feedback structure
that reengages communities as the systems and the world evolves.
One possible solution could be to add a feature in which families
could opt into providing feedback directly to the conversational
agent on its performance. These types of changes can be made
incrementally, but these small shifts can be powerful.

Conclusion
Conversational agents powered by AI offer many applications
and opportunities for children through social interactions. These
tools must be carefully built and designed to meet children’s
developmental needs, and this can be achieved by using data
based on how they think and behave. Technology design must be
focused on the population it aims to serve, not on an imagined
ideal user. Children’s interactions with AI systems not only
influence their actions and thoughts today but have implications
on how they will interact with other people into the future.
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